CTRE is an Iowa State University center, administered by the Institute for Transportation.

Address: 2711 S. Loop Drive, Suite 4700, Ames, IA 50010-8664

Phone: 515-294-8103
FAX: 515-294-0467

Website: www.ctre.iastate.edu/

Iowa State University--Becoming the Best

Development of Railroad Highway Grade Crossing Consolidation Rating Formula


Principal investigators:

Co-principal investigator:

Project status


Start date: 09/27/13
End date: 02/28/15


Report: Development of Railroad Highway Grade Crossing Consolidation Rating Formula (7.31 mb pdf) February 2015

Tech transfer summary: Development of Railroad Highway Grade Crossing Consolidation Rating Formula (91.68 kb pdf) Feb 2015



About the research


The goal of this project was to provide an objective methodology to support public agencies and railroads in making decisions related to consolidation of at-grade rail-highway crossings. The project team developed a weighted-index method and accompanying Microsoft Excel spreadsheet based tool to help evaluate and prioritize all public highway-rail grade crossings systematically from a possible consolidation impact perspective.

Factors identified by stakeholders as critical were traffic volume, heavy-truck traffic volume, proximity to emergency medical services, proximity to schools, road system, and out-of-distance travel. Given the inherent differences between urban and rural locations, factors were considered, and weighted, differently, based on crossing location. Application of a weighted-index method allowed for all factors of interest to be included and for these factors to be ranked independently, as well as weighted according to stakeholder priorities, to create a single index. If priorities change, this approach also allows for factors and weights to be adjusted.

The prioritization generated by this approach may be used to convey the need and opportunity for crossing consolidation to decision makers and stakeholders. It may also be used to quickly investigate the feasibility of a possible consolidation. Independently computed crossing risk and relative impact of consolidation may be integrated and compared to develop the most appropriate treatment strategies or alternatives for a highway-rail grade crossing. A crossing with limited- or low-consolidation impact but a high safety risk may be a prime candidate for consolidation. Similarly, a crossing with potentially high-consolidation impact as well as high risk may be an excellent candidate for crossing improvements or grade separation.

The results of the highway-rail grade crossing prioritization represent a consistent and quantitative, yet preliminary, assessment. The results may serve as the foundation for more rigorous or detailed analysis and feasibility studies. Other pertinent site-specific factors, such as safety, maintenance costs, economic impacts, and location-specific access and characteristics should be considered.